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Multiple sclerosis  (MS) is a chronic debilitating dis‑
ease with a pathological hallmark of inflammatory 

demyelination in the white matter and cortex, implying a 
disturbance of the symbiotic relationship of the axon and 
myelin sheath.[1] It is an immune‑mediated disease involv‑
ing the brain, spinal cord, and the optic nerves. The onset 
of MS generally occurs at the age of 30, but approximately 
2-5% of MS patients have disease onset at an age younger 
than 16 years.[2‑4] More than 85% of adult‑onset patients 
experience a relapsing‑remitting multiple sclerosis (RRMS) 
course and 10% have a primary progressive onset with no 
or only a single acute event.[5] In contrast, the RRMS course 
comprises more than 98% of pediatric‑onset MS.[2‑4,6]

The overall prognosis of pediatric‑onset MS tends 
to be worse than adult‑onset MS, with a higher relapse 

rate[7] and a higher magnetic resonance imaging  (MRI) 
lesion burden.[8] Pediatric‑onset MS patients often develop 
fixed disability on average two decades after diagnosis, 
and their median age at evolution to secondary progres‑
sion and reaching the fixed disability milestone is about 
10 years younger than that of adult‑onset patients.[2,3] In 
addition, the social and individual impact and cost of the 
disease in pediatric MS patients is significantly higher. For 
example, cognitive dysfunction is found in about 30% of 
pediatric MS children and adolescents, and more than half 
of them have at least one psychiatric diagnosis.[9,10] These 
complications impair learning and the chance of sustained 
employment. Pediatric MS, therefore, comprises a small 
but important subgroup of MS, in whom the diagnosis must 
be differentiated from clinical mimics such as acute dis‑
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seminated encephalomyelitis (ADEM) and neuromyelitis 
optica (NMO).

The distinction of MS, ADEM, and NMO is important 
for considerations of prognosis and treatment. The long‑term 
treatments differ for MS  (immunomodulation: First‑line 
with interferon‑β or glatiramer acetate[11] and second‑line 
with natalizumab[11‑15] or rarely cyclophosphamide[11,16]) 
and NMO (immunosuppression with azathioprine[17‑20] or 
mycophenolate[20,21] or B‑cell depletion therapy with ritux‑
imab[20‑24]). In addition, immunomodulatory agents such 
as interferon‑β may cause exacerbation in patients with 
NMO.[25,26] Patients with ADEM do not need long‑term 
treatments because it is typically a single acute event;[27] 
however, they sometimes need prolonged steroid treatment.

In this review, we summarize the clinical, neuroim‑
aging, and paraclinical key differences between pediatric 
patients with MS, ADEM, and NMO, and review the 
biomarkers that facilitate diagnosis and may aid decision 
making of management.

Pathogenesis

The pathogenesis of pediatric MS is complex. Cur‑
rent evidence suggests that the disease might arise from 
interactions between immune systems and environmental 
factors  (e.g.  Epstein-Barr virus infection, smoking) and 
partly depends on the individual susceptibility [e.g. human 
leukocyte antigen (HLA) gene, vitamin D deficiency].[28‑31] 
These complex interactions are supported by a cohort 
study comprising 302 children with a first inflammatory 
demyelinating episode, which found that children with all 
three risk factors (remote Epstein‑Barr virus infection, low 
serum 25‑hydroxyvitamin D concentrations, presence of 
HLA‑DRB1*15 alleles) were more likely to have a diag‑
nosis of MS eventually than those with no or only one risk 
factor.[32]

Epidemiology

The incidence of acquired inflammatory demyelinating 
syndromes of the central nervous system (CNS) has been 
estimated to be 0.6-1.66/100,000 children per year,[33‑36] 
and a quarter to a third of them eventually are diagnosed 
with MS.[32,34,37] About 80% of pediatric‑onset MS patients 
had a first acquired inflammatory demyelinating syndrome 
onset at over 10 years of age.[38] The initial presentation of 
pediatric‑onset MS can be with polyfocal clinically isolated 
syndrome  (CIS)  (26-66%), optic neuritis  (ON; 10-23%; 
more commonly bilateral involvement), isolated acute 
transverse myelitis (TM; 2-14%), or ADEM (8-18%).[39,40] 
Bilateral sequential or recurrent ON with an abnormal 
brain MRI is associated with an increased risk of MS in 
children.[41] In addition, an inter‑attack interval shorter than 
1 year, multiple relapses in the first 2 years of the disease, or 

a higher number of relapses increased the risk of developing 
a secondary progressive MS.[42]

Diagnostic consensus

The diagnosis of MS in both adults and children is evolv‑
ing, but the early diagnosis in children is still a challenge 
because the initial presentation of acute CNS inflammatory 
demyelination is usually atypical. Two other major mimics 
of MS are ADEM and NMO; both are more common in 
pediatric populations than in adults and have different treat‑
ment strategies. The first consensus definition for pediatric 
MS and related disorders for patients younger than 18 years 
of age was published in 2007[43] and later revised in 2013[27] 
by the International Pediatric Multiple Sclerosis Study 
Group (IPMSSG). Table 1 shows the main criteria used cur‑
rently for diagnosing CIS, ADEM, and NMO. Table 2 sum‑
marizes the diagnostic requirements for pediatric MS; each 
row constitutes a separate case definition for MS. The MRI 
criteria for pediatric MS diagnosis should apply the updated 
2010 revised McDonald criteria[44] and are detailed in Table 3.

The clinical CNS event

The first event of acquired inflammatory demyelinat‑
ing syndromes is defined as a single acute‑onset CNS event 
caused by presumed inflammatory demyelination in a previ‑
ously healthy and developmentally intact child without any 
clinical history of symptoms of CNS demyelination. The 
symptom must last at least 24 h and the diagnosis must have 
“no better explanation” than inflammatory demyelination. For 
instance, leptomeningeal enhancement suggests a vasculitic 
or malignant process[45] and any previous insidious or pro‑
gressive pattern of onset suggests an inheritable white matter 
disease.[46] After the first attack, the second or MS‑defining 
event is typically within 2 years.[47] If the first event is bilateral 
ON, 36% of pediatric cases develop MS within 2 years.[48,49]

Clinically isolated syndrome

The term “clinically isolated syndrome” is used to 
define the first CNS event suggestive of inflammatory 
demyelination, but which does not fulfil the diagnosis of 
ADEM, NMO, or MS.[50,51] The CIS can be either monofo‑
cal or polyfocal without encephalopathy. The presentation 
is heterogeneous involving optic nerve, spinal cord, brain 
stem, cerebellum, and any parts of the supratentorial brain.

Acute disseminated encephalomyelitis

ADEM presents with a polyfocal clinical index event 
with encephalopathy and an abnormal brain MRI within 
3 months of the onset. Typically, the MRI shows diffuse, 
poorly demarcated, bilateral but usually asymmetrical 
T2‑hyperintense lesions lager than 1-2 cm. T1‑weighted 
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Table 1: Diagnostic consensus for pediatric clinically isolated syndrome, acute disseminated encephalomyelitis, and neuromyelitis 
optica[27]

All are required Variants

CIS
A first monofocal or polyfocal CNS event with presumed inflammatory demyelinating cause
Absence of a prior clinical history of CNS demyelinating disease (e.g. absence of past ON, 
TM, hemispheric or brain‑stem syndromes)
No encephalopathy that cannot be explained by fever
The baseline MRI does not meet the diagnostic criteria for MS

ADEM
A first polyfocal clinical CNS event with presumed inflammatory demyelinating cause
Encephalopathy that cannot be explained by fever
No new clinical and MRI findings emerge≥≥3 months after the onset
Brain MRI is abnormal during the acute phase (<3 months)
Typical brain MRI findings:

Diffuse, poorly demarcated, >1-2 cm lesions involving mainly the cerebral white matter
“Rare” T1‑hypointense lesions in the white matter
Deep gray matter lesions can be present

Multiphasic ADEM
Two events consistent with ADEM attacks 
separated by≥≥3 months

NMO[27,54]

ON
Acute TM
≥2 of three supportive criteria

Contiguous long extended spinal cord lesion≥≥3 vertebral segments
Brain MRI does not meet the diagnostic criteria for MS
Positive serum anti-AQP4‑IgG

NMO spectrum disease
Relapsing ON with positive serum anti-
AQP4‑IgG
Relapsing TM with positive serum anti-
AQP4‑IgG

Abbreviations: CNS: Central nervous system; ON: Optic neuritis; TM: Transverse myelitis; MRI: Magnetic resonance imaging; IgG: 
Immunoglobulin G; ADEM: Acute disseminated encephalomyelitis; NMO: Neuromyelitis optica; MS: Multiple sclerosis

Table 2: Diagnostic consensus for pediatric multiple sclerosis (each row constitutes a separate case definition for MS)[27]

Number of clinical 
CNS events with 
presumed inflammatory 
demyelinating cause

Patient 
age 

(years)

No. of 
MRI 
scans

1st clinical 
CNS event

Time gap 2nd clinical CNS 
event

MRI requirements

Dissemination 
in space*

Dissemination 
in time*

Note

≥≥1 ≥≥12 ≥≥1 Non‑ 
encephalopathic 
episode

Yes Yes

≥≥1 <12 ≥≥2 Yes Yes 2nd MRI scan 
showed≥≥1 new lesion

≥≥2 <18 ≥≥1 >30 days Non‑encephalopathic 
episode

Involving≥≥2 areas of 
the CNS

≥≥2 <18 ≥≥2 ADEM ≥≥3 months Non‑encephalopathic 
episode

Yes MRI scan of event 2 
showed new lesions 
fulfilled DIS

Abbreviations: *: DIS and DIT should apply the updated 2010 revised McDonald criteria[44]; MS: Multiple sclerosis; CNS: Central nervous system; 
MRI: Magnetic resonance imaging; DIS: Dissemination in space; DIT: Dissemination in time; ADEM: Acute disseminated encephalomyelitis

Table 3: McDonald MRI criteria for multiple sclerosis[44]

Dissemination in space Dissemination in time

No. of 
MRI scans

Time point of 
scans

Contrast agents 
requirement

MRI findings

Asymptomatic lesions* found 
in the following≥≥2 of 4 

≥1 Periventricular
≥1 Juxtacortical
≥1 Infratentorial
≥1 Spinal cord

1 At any time point Yes Simultaneous presence of asymptomatic 
gadolinium‑enhancing† and non‑enhancing lesions

2 At any time point No Scan 2 compared to scan 1 showed≥≥1 new T2 lesion

Yes Scan 2 compared to scan 1 showed≥≥1 
gadolinium‑enhancing lesion

Abbreviations: *: In cases of brain stem and spinal cord syndromes, all lesions within the symptomatic region were excluded[53]; 
†: Gadolinium‑enhancing lesion should be reliably determined not due to non‑MS pathology; DIS: Dissemination in space; DIT: Dissemination in 
time; MRI: Magnetic resonance imaging
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hypointense lesion in the white matter is rare. Patients are 
designated as having multiphasic ADEM if they have a 
second episode consistent with ADEM occurring more than 
3 months after the index event. If the third episode occurs, 
with or without encephalopathy, it is no longer “ADEM” but 
should be considered another clinical entity with chronicity, 
such as MS or NMO.[27] ADEM was classified as monophasic, 
recurrent, and multiphasic types in previous consensus,[43] but 
the current version eliminates the term “recurrent ADEM”.[27]

Multiple sclerosis

The diagnosis of clinical definite MS requires two 
clinical events separated by at least 1  month: Evidence 
of dissemination in time (DIT) and clinical and paraclini‑
cal  (neurophysiology or neuroimaging) evidence for the 
lesions exhibiting dissemination in space (DIS), and exclu‑
sion of alternative diagnoses.[52] MRI is the most powerful 
paraclinical method to demonstrate both DIT and DIS, even 
with only one baseline MRI at the first event.[44] It is of 
note that MRI evidence of both DIS and DIT is specific for 
MS, especially for young adults with typical CIS presenta‑
tions (unilateral ON, myelitis, and brainstem syndromes).[53]

In pediatric patients with two clinical events, the first 
event can be CIS followed by another non‑encephalopathic 
attack separated by more than 30 days or ADEM followed 
by a non‑encephalopathic event separated by at least 
3  months with clinical or MRI demonstrated DIS.[27] In 
adolescents aged 12 years and above, a first, single, CNS 
non‑encephalopathic event with an MRI showing evidence 
for both the DIS and DIT can also make the diagnosis of 
MS. For those aged less than 12 years, a first, single, CNS 
non‑encephalopathic event with MRI asymptomatic lesions 
fulfilling DIS will need a second MRI showing at least one 
new lesion consistent with DIT to make the diagnosis of MS.

Neuromyelitis optica

NMO is defined as both ON and TM occurring simul‑
taneously or sequentially with at least two of three pieces of 
supportive features: (1) A contiguous spinal cord MRI lesion 
extending over three or more vertebral segments, (2) brain 
MRI not meeting the diagnostic criteria for MS,[44] and (3) the 
presence of anti‑aquaporin‑4 (AQP4) IgG in serum.[27,54]

Encephalopathy

Encephalopathy is defined as an alteration in conscious‑
ness or a behavioral change unexplained by fever, systemic 
illness, or postictal epileptic symptoms. Encephalopathy, al‑
though still primarily a clinical diagnosis, was given a clearer 
definition in the current guideline than in the 2007 version.[27,43] 
However, change of consciousness is not very specific to dis‑
tinguish ADEM from MS, and it can also occur in NMO.[55] 

An alteration of consciousness can also occur in adult CIS 
patients, initially diagnosed with ADEM.[56] As encephalopa‑
thy is crucial in the differential diagnosis of MS, especially 
in those aged 12 years and above, paraclinical studies such 
as electroencephalograph (EEG) showing an excess of back‑
ground slow wave activity[57] may be used acutely to provide 
clearer evidence for or against the presence of encephalopathy.

Diagnostic modalities

The diagnosis of ADEM, NMO, CIS, and MS is based 
on the clinical presentations and paraclinical investigations. 
The most often deployed paraclinical tests are MRI, cere‑
brospinal fluid (CSF) examination, serum tests, and biopsy.

Magnetic resonance imaging

The characteristic morphological findings of brain MRI 
in MS are useful to help differentiate MS from ADEM and 
NMO in children. First, the presence of “Dawson’s finger” 
which represents a lesion perpendicular to the long axis of 
the corpus callosum can predict the conversion to MS in chil‑
dren with high specificity.[37] It is also helpful to differentiate 
between NMO and MS.[58] Second, the presence of “black 
holes,” suggesting longstanding tissue destruction, is specific 
for MS and is rarely visible in ADEM.[59,60] The imaging 
features of “black holes” are non‑enhancing hypointensity 
on T1 and hyperintensity on T2 imaging lasting for more 
than 3 months. The presence of at least one black hole lesion 
and at least one periventricular white matter T2‑hyperintense 
lesion abutting any portion of the lateral ventricles predicts 
progression to MS in children at the first acquired inflamma‑
tory demyelinating episode.[60] In addition, the MRI features 
of spinal cord lesions in MS patients are single or multiple 
focal, sharply delineated, T2‑hyperintense lesions extending 
one vertebra (maximum two segments) in length;[61,62] how‑
ever, a lesion over three or more segments can also be found 
in pediatric‑onset MS,[63] as well as in NMO and ADEM.[64]

The specific locations of some MRI lesions, accom‑
panied by certain clinical symptoms, are important clues 
suggesting NMO rather than MS. The fluid‑attenuated 
inversion recovery  (FLAIR) signal abnormality in NMO 
is typically contiguous throughout the periventricular and 
along the third or fourth ventricular periependymal tissues, 
and involves the hypothalamus.[65] Besides, a linear medul‑
lary or medullospinal lesion in an individual manifesting 
intractable hiccups and nausea lasting more than 48 h are 
typical for NMO and extremely rare in MS.[66]

Cerebrospinal fluid

CSF is obtained for three main purposes:  (1) To 
confirm the diagnosis of MS  [e.g.  presence of oligoclo‑
nal bands  (OCBs)];  (2) to identify other treatable dis‑
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eases  (e.g.  infection, systemic inflammatory disease, or 
tumors); and (3) to detect biomarkers, for prognosis. CSF 
findings supporting CNS inflammatory demyelination in‑
clude an elevated immunoglobulin G (IgG) index, or at least 
two OCBs in the CSF but not in the corresponding serum 
samples[44] on isoelectric focusing (IEF).[67,68] Although new 
diagnostic criteria for RRMS no longer require routine CSF 
studies, complete CSF studies are still valuable in children. 
In particular, a negative OCB test often prompts the consid‑
eration of other diseases mimicking MS or CIS. In children 
with ON, the presence of OCBs, with or without abnormal 
brain MRI, has been shown to be associated with subsequent 
MS development.[69] However, OCBs do not always occur in 
MS (85-90%), and can present in ADEM (in up to 29%)[70,71] 
and NMO (in up to 30%).[72] In addition, if intrathecal IgG 
synthesis was detected, it tends to disappear in the ADEM 
and NMO patients while it is persistently detectable in MS 
patients.

Serum autoantibodies

Existing criteria are useful in everyday practice, but 
diagnostic uncertainty is frequent in pediatric inflammatory 
demyelinating diseases. For instance, diffuse, large, poorly 
demarcated T2‑hyperintense brain white matter lesions can 
be found in the children with ADEM and NMO,[55,73,74] and 
therefore, these findings alone are not concrete evidence 
for a specific diagnosis. Biomarkers are clinically useful 
for differentiating difficult cases and for disease course 
prediction. They are relatively non‑invasive, more acces‑
sible, and may reflect biochemical or immune mechanisms. 
Currently, clinically relevant biomarkers include autoanti‑
bodies against AQP4 and possibly myelin oligodendrocyte 
glycoprotein  (MOG). They may increase the confidence 
of disease diagnosis and facilitate decision making for 
long‑term treatment.

NMO‑IgG and anti‑AQP4‑IgG antibody
Anti‑AQP4‑IgG is the first clinically useful antibody 

in human inflammatory demyelinating diseases. In 1999, 
Wingerchuk et al. defined NMO as comprising both ON and 
TM with a long spinal cord lesion (three or more vertebral 
segments).[75] From sera of 124 clinically ascertained NMO 
patients, NMO‑IgG outlining CNS microvessels, pia, subpia, 
and Virchow‑Robin spaces was identified.[76] It is detectable 
in 60‑90% of patients with NMO and is specific for NMO 
because the seroprevalence of this antibody in other inflam‑
matory demyelinating diseases, including MS, is very low. 
The main target antigen of NMO‑IgG is the astrocyte water 
channel protein AQP4.[77] AQP4 is concentrated at the end‑feet 
of astrocytes facing the blood‑brain barrier (BBB), forming 
an integral part of the BBB and the blood‑CSF barrier.[78‑80] 
The presence of NMO‑IgG or anti‑AQP4 antibody has been 

proposed as one of the diagnostic criteria for NMO.[54,81]

The pathological hallmark of NMO lesions is loss 
of the immunostaining for AQP4 and glial fibrillary 
acidic protein  (GFAP); both are not lost in MS lesions 
unless there is a chronic inactive lesion or cavity.[82‑84] 
The pathogenic potential of anti‑AQP4 antibody was 
demonstrated by animal models showing that transfer of 
human anti‑AQP4 antibody into mice or rats could induce 
lesions typical for NMO[85‑87] with complement‑dependent 
cytotoxicity or antibody‑dependent cellular cytotoxicity as 
the major mechanism in the formation the NMO lesions. 
Currently, the presence of NMO‑IgG or anti‑AQP4 anti‑
body has been one of the NMO diagnostic criteria since 
2006. A spectrum of NMO disorders (NMOSD) has been 
formulated comprising conditions characterized by the 
presence of the antibody and recurrent or simultaneous 
bilateral ON, and idiopathic long extensive transverse 
myelitis.[88,89]

There have been a variety of immunoassays used to 
detect anti‑AQP4 antibody with high diagnostic specificity 
for NMO  (85-100%), although the sensitivity is moder‑
ate  (33-91%).[90,91] Current immunoassays include cell‑, 
tissue‑, and protein‑based assays.[90,92] Of these three im‑
munoassays, the cell‑based assay, using cell lines that have 
been transfected with AQP4 protein, has been shown to be 
the most sensitive.[77,91] There are two isoforms of AQP4 
used for immunoassays: M1 isoform [protein generated by 
mRNA translation initiated at methionine (Met)‑1] and M23 
isoform (translation initiated at Met‑23).[93] Anti‑NMO‑IgG 
generally binds with greater affinity to M23‑AQP4 than to 
M1‑AQP4,[94] and AQP4‑M23 transfected cell‑based assay 
seems to be slightly more sensitive than M1‑based assay.[95‑97] 
However, the function of M1‑ and M23‑AQP4 and in vivo 
conformational epitopes of AQP4 in the human CNS still 
needs to be elucidated.[93,98‑100]

Several lines of evidence argue for a pathogenic 
role for anti‑AQP4‑IgG in NMO. First, the serum an‑
ti‑AQP4‑IgG was reported to be positive in blood donated 
10 years before the disease onset in a 34‑year‑old female 
with NMO.[101] Second, adults with acute myelitis with less 
than three vertebral segments, isolated recurrent brainstem 
demyelination, or monophasic ON who do not fulfil the 
clinical criteria for NMO or NMOSD have been shown 
to have seropositivity of anti‑AQP4‑IgG at low titers.[102] 
Third, positive findings in repeated antibody tests do not 
always predict relapses.[103]

In pediatric NMO patients, the presence of NMO‑IgG 
or anti‑AQP4 antibody can help diagnose the disease, 
especially in those with disease onset before the age of 
10 years.[55] The seropositivity seemed to be more frequent 
in the patients with a relapsing course than children with 
a monophasic disease.[21,73,104] In practice, the presence of 
NMO‑IgG and anti‑AQP4‑IgG can help differentiate chil‑
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dren with NMO and NMOSD from ADEM, CIS, and MS. 
Although the role of long‑term antibody titer monitoring 
is not known, a rising level of NMO‑IgG in an individual 
patient may predict a new attack.[105]

Anti‑MOG antibody
Another biomarker is the presence of antibodies against 

MOG, an autoantigen expressed exclusively in the outer 
sheath of CNS myelin and oligodendrocytes.[106] Although 
its pathogenic role is still elusive, some evidence shows that 
the IgG to native MOG at high titers is capable of inducing 
complement activation[107] and antibody‑dependent cytotox‑
icity when natural killer cells are present in vitro;[108] both 
mechanisms contribute to CNS demyelination. The best 
method to detect anti‑MOG antibody is a cell‑based assay 
detecting antibodies against native MOG in natural confir‑
mation on the cell surface and this form has been shown to 
be pathogenic in vitro.[109]

The anti‑MOG antibody has been consistently detected 
in a substantial proportion of children with ADEM (27-
47%), MS (up to 21%), CIS (up to 36%), AQP4‑IgG‑se‑
ronegative NMO, and in recurrent ON, but only rarely 
in adult MS.[107,108,110‑114] Among these pediatric patients, 
the antibodies have been found to be transiently elevated 
during acute episodes. In ADEM, the level would gener‑
ally decrease to an undetectable level in fully recovered 
patients.[110] In patients with recurrent ON or MS, the titer 
was persistently detectable for up to 5 years, but usually at 
low titers.[110,112,115] The persistent seropositivity of anti‑MOG 
antibody may highlight the risk of ongoing inflammation, 
suggesting chronicity rather than an acute single episode 
of demyelination; so, these patients may warrant more ag‑
gressive treatment.[116]

Brain biopsy

Although rarely required, biopsies are occasionally 
performed to exclude other treatable diseases (most often 
tumors,[117] vasculitis, and encephalitis) and to establish the 
diagnosis of demyelinating disease.[118] The pathological 
study of pediatric MS and related disorders has derived 
mainly from atypical presentations with space‑occupying 
lesions, fulminant illness, or fatalities. The pathology of MS 
is consistent with focal demyelinated plaques with various 
degrees of perivascular inflammation and axonal injury or 
loss.[119,120] In the cortex, subpial inflammatory demyelinated 
lesions are typical of the progressive stages of MS, although 
they can also be found in the early stages.[121]

Conclusion

The updated criteria simplify the diagnosis of pediatric 
MS, especially for those who have a first episode of acute 
CNS inflammatory demyelination at age 12 years and older. 
The formal diagnosis of MS should always take into con‑

sideration the clinical, imaging, and paraclinical evidence. 
When there is diagnostic uncertainty, serum biomarkers may 
prove very valuable in the clinical diagnosis. Currently use‑
ful biomarkers include the specific NMO marker anti‑AQP4 
antibody and the neuroinflammatory signature anti‑MOG 
antibody. Both may help in clinical diagnosis and treatment 
decision making.
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