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G‑protein‑Coupled Receptors and Their (Bio) Chemical 
Significance Win 2012 Nobel Prize in Chemistry

Hsi‑Hsien Lin

The human genome encodes more than 800 G‑pro‑
tein‑coupled receptors (GPCRs) that form the largest 

receptor family among all cell surface proteins.[1,2] GPCRs 
are responsible for every aspect of human biology from 
vision, taste, sense of smell, sympathetic and parasym‑
pathetic nervous functions, metabolism, and immune 
regulation to reproduction.[3] Furthermore, ~40% of all 
pharmaceutical drugs are known to target GPCRs.[4,5] It 
is therefore not surprising that the 2012 Nobel Prize was 
awarded to Drs. Robert J. Lefkowitz and Brian K. Kobilka 
for their contribution to the studies of GPCRs. What is 
less understood is the category of prize they received: 
Chemistry.

In fact, GPCR‑related researchers have a rather long 
relationship with the Nobel Prize [Figure 1]. In 1967, 
Ragnar Granit, Haldan Keffer Hartline, and George Wald 
were awarded the Nobel Prize in Physiology or Medicine 
for their discoveries concerning the physiological and 
chemical visual processes in the eye. Sir Bernard Katz, Ulf 
von Euler, and Julius Axelrod received the same Prize in 

1970 for their studies of the neurotransmitters in the nerve 
terminals and the mechanism for their storage, release, 
and inactivation. Earl Wilbur Sutherland Jr. discovered 
cyclic AMP as the second messenger for mediating the 
action of hormones and won the 1971 Prize. Sir James 
W. Black received the Nobel Prize in 1988 for the discov‑
ery of propranolol and cimetidine, two clinical drugs that 
block the action of the b‑adrenergic receptor (bARs) and 
the H

2
 histamine receptor, respectively. In 1994, for the 

discovery of G‑proteins and their role in signal transduc‑
tion in cells, Alfred G. Gilman and Martin Rodbell were 
honored with the Prize. Arvid Carlsson received the same 
recognition for his work on dopamine in 2000. Richard 
Axel and Linda B. Buck were the recipients of the 2004 
Prize for their work on odorant receptors and the olfactory 
system [Figure 1].[6]

Interestingly, these previous works were more con‑
cerned about the physiological relevance and clinical 
aspects of GPCR‑related issues, and were all awarded 
the Nobel Prize in Physiology or Medicine. Instead, 
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Drs. Lefkowitz and Kobilka took a molecular and struc‑
tural approach to reveal the most basic biochemical and 
mechanistic detail of GPCR function.[6‑8] Their work 
provides a chemical insight into the way GPCRs receive 
and deliver cellular signals across the plasma membrane. 
Most importantly, due to their discoveries, the therapeutic 
potential of GPCRs can now be more efficiently mined. 
They indeed fully deserve the Chemistry Prize, albeit with 
a medical flavor.

The pathway that leads GPCRs to the Nobel 
Prize

How a cell mediates the exchange of extracellular 
information into intracellular chemical messages has 
puzzled generations of scientists. Although the concept of 
ligand‑activated receptor was noted more than a century 
ago, the molecular identification and characterization of 
receptor molecules has been slow to say the least.[9] In 
1970s, Prof. Lefkowitz was one of the first to demonstrate 
successfully the existence of specific cell surface receptors 
for endocrine hormones.[10‑12] By using chemically synthe‑
sized radioactive ligands, he showed the specific binding 
of adrenocortiotropic hormone (ACTH) and epinephrine 
to distinct receptors that are able to activate adenylyl cy‑
clase.[10‑12] He later focused on the studies of bARs and 
proposed the ternary complex model to explain how cells 
convert extracellular stimuli into intracellular signals.[13] 
This model dictated that the ligand‑receptor interaction 
leads to the formation of a high‑affinity receptor complex 
where a cell surface receptor is coupled at both ends to the 
extracellular agonist (ligand) and intracellular G‑protein, 
respectively.[13]

The isolation and purification of functional bAR 

was achieved some years later after efficient detergent 
solubilization, followed by ligand‑specific affinity 
chromatography.[14,15] The functional identity of the isolated 
receptor was proven after reconstitution of the purified re‑
ceptor with G proteins and adenylyl cyclase.[16,17] Subsequent 
N‑terminal amino acid sequencing revealed unique peptide 
sequences from which degenerate oligonucleotide probes 
were derived, allowing Prof. Kobilka to successfully clone 
the bAR gene.[18,19] The delineation of the full‑length bAR 
protein sequence uncovered a major structural surprise: The 
presence of the seven transmembrane (7TM) helices that 
shared some sequence similarity with the visual pigment 
protein rhodopsin.[9,20] Rhodopsin, a 7TM cell surface pro‑
tein, was already a well‑known G‑protein‑linked receptor 
at the time.[21,22] Thus, a structural signature was appreciated 
among light‑sensitive proteins and hormone and neurotrans‑
mitter receptors. This realization and molecular cloning of 
other G‑protein‑linked receptor genes finally cemented the 
common 7TM structural feature for the GPCR family.[3,9,20]

With the development of molecular cloning techniques 
in the 1980s, site‑directed mutagenesis and chimeric recep‑
tors were employed to reveal the structural‑functional rela‑
tionship of GPCRs.[9,20,23] These studies identified specific 
receptor sub‑domains important for ligand binding and 
G‑protein coupling.[24,25] In addition, constitutively active 
receptors were discovered when specific residues were mu‑
tated, providing a relevant insight into specific human dis‑
eases.[26] During the same period, another convergent theme 
was also noted among many GPCRs, namely ligand‑induced 
receptor phosphorylation and inactivation or desensitiza‑
tion.[9,20,23] The identification of GPCR kinases (GRKs) and 
b‑arrestins not only provided molecular explanation for 
GPCR desensitization but also led to the demonstration of 
G‑protein‑independent signaling mechanisms as well as 
GPCR endocytosis and recycling. It is accepted now that G 
proteins, in fact, represent only part of the signaling adaptors 
used by GPCRs.[27,28]

Structural‑functional analysis also noted distinct struc‑
tural alterations in different states of receptor activation. 
To achieve this, a multitude of biochemical and biophysi‑
cal methods were developed and employed to dissect the 
structural transitions of receptors.[9,20,23] It was appreciated 
from these studies that the structural alterations are key to 
the understanding of receptor activation mechanism.[29,30] 
Thus, a high‑resolution structure of GPCRs was necessary 
for the detailed analysis of the conformational changes 
in activated and non‑activated states, even though it is 
notoriously difficult to crystallize the membrane proteins. 
Dr. Palczewski and colleagues were the first to solve the 
3D structure of bovine rhodopsin, a highly enriched GPCR 
in bovine rod outer segment membranes, providing initial 
insights into the localization of the TM helices in the mem‑

Figure 1: The general model of GPCR‑mediated ligand interaction 
and signal transduction. The classification of G proteins and the 
downstream effector molecules are listed. Nobel Prizes awarded to 
GPCR‑related studies are also listed at the right panel
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brane.[31] Soon after, a major breakthrough was achieved 
when Kobilka’s laboratory reported the crystal structure of 
inverse agonist‑bound bAR that was stabilized by an anti‑
body in a lipid environment.[32] This was quickly followed 
by a more defined structure from the same group after an 
engineered bAR‑T4 lysozyme fusion protein generated a 
better crystal.[33,34] Finally, the structure of an active ternary 
receptor complex containing agonist‑bound bAR coupled to 
G proteins was solved in 2011 by Kobilka and colleagues.[35] 
When compared with the structure of non‑activated bAR, the 
conformational changes in the activated receptor revealed 
a sequential event leading to the activation of G protein. In 
short, ligand binding induced a major displacement of the 
6th TM segment of receptor, exposing a hydrophobic cleft 
into which the C‑terminal helix of Ga protein was able to 
insert. This interaction in turn changed the G protein struc‑
ture, eventually leading to its activation.[6‑8]

The biochemical methodologies developed for the 
bAR structural study are now being adapted and applied to 
solve the structure of other GPCRs. With the detailed 3D 
structure of the active ternary bAR complex and others, 
it is possible to screen for better small molecule agonist/
antagonist/inverse agonist more efficiently. This should 
revolutionize the development of pharmacologic research 
for drugs targeting GPCRs.

GPCRs and their (bio) chemical significance

The aforementioned summary of the groundbreaking 
work done by the two Nobel Laureates has emphasized the 
general biological importance of GPCRs. The following 
sections will focus on the specific aspects that highlight 
the (bio) chemical significance of GPCRs in health and 
disease.

Ligands

GPCRs are known to interact with a plethora of ligands 
ranging from photons, ions, amino acids, odorants, phero‑
mones, eicosanoids, neurotransmitters, peptides, proteins, 
and hormones.[3,36] Thus, a wealth of chemical signals can 
be deciphered by distinct GPCRs. This versatile ability 
is in part determined by the diversity in receptor protein 
sequences that share different degrees of similarity or 
phylogenetic relationship. Recently, the GRAFS classifi‑
cation system grouped all human GPCRs into Glutamate, 
Rhodopsin, Adhesion, Frizzled/Taste, and Secretin families 
based on the phylogenetic criteria.[1] Interestingly, natural 
ligands to the individual GPCR families also seem to vary 
considerably. For example, most Glutamate‑class GPCRs 
bind to amino acids, cations, or small organic compounds, 
the Secretin‑class receptors interact mostly with peptide 
or protein hormone, while the Rhodopsin‑class receptors 
can couple with substances such as photons, nucleotides, 

lipid‑like compounds, peptides, and proteins (including 
enzymes). The Adhesion‑class GPCRs are known to interact 
with cell surface or extracellular matrix proteins, glycosami‑
noglycans, or even microbial ligands.[1] Nevertheless, for the 
majority of GPCRs, the identity of their natural ligands is 
still unknown, hence remain orphan receptors.

In general, based on their effect on the receptor func‑
tion, ligands can be classified as agonists, antagonists, or 
inverse agonists.[5,36] Agonists exert a positive signaling 
response, while inverse agonists decrease constitutive 
signaling activity. Antagonists compete and inhibit the 
binding of agonists but do not produce any response by 
themselves. Studies have shown that while many GPCR 
ligands are found to be full agonists, quite a few, in fact, 
function as partial agonists suggesting that ligand‑in‑
duced GPCR activation is more complex than predicted 
previously. The reason for such differential activations 
might be explained by the fact that GPCRs may adopt 
multiple conformational states with different signaling 
abilities.[23]

Molecular studies have shown that while ligand binding 
activates GPCRs by commonly inducing a conformational 
change in the 7TM core domain, they do so through rather 
diverse mechanisms.[37] Most small ligands bind in a cav‑
ity formed within the TM region, but peptide and protein 
ligands might also interact with the N‑terminal region and 
the extracellular loops. In the case of rhodopsin, photon, in 
fact, activates retinol molecule that is covalently linked in 
the TM cavity, changing its conformation from cis to trans 
configuration to activate the receptor.[38‑41] In protease‑acti‑
vated receptors (PARs), activation is brought about by the 
proteolytic cleavage of the N‑terminus of receptors by serine 
proteases (such as thrombin and trypsin). Part of the newly 
cleaved receptors then act as an agonist that in turn binds 
and activates the receptors.[42,43] Thus, it seems that GPCRs 
have evolved successfully to adapt various mechanisms to 
respond to a diverse array of ligands for activation. Indeed, 
GPCRs represent a treasure trove for ligand identification 
and potential drug targets.[4,44,45]

Conformational (structural) variants of GPCRs

The conventional view of GPCR activation is that the 
receptor exists in two conformational states: Inactive and 
active. Agonist binding stabilized the active form of the 
receptor, while inverse agonist secured the inactive form. 
Intracellular signaling is achieved by the active conforma‑
tion that allowed the efficient coupling and activation of 
G proteins and downstream adaptor molecules.

However, recent studies have suggested that the 
mechanisms of receptor activation are far more complex 
than the simple biomodal switch system.[46‑48] First of all, 
multiple (more than two) conformational variants of GP‑
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CRs are likely to be present in equilibrium in the plasma 
membrane. Each GPCR conformation can potentially 
interact with selective ligands and couple to specific in‑
tracellular signaling complexes, finally leading to different 
functional phenotypes. Hence, different ligands selectively 
bind to and stabilize the same GPCR at specific confor‑
mational states that activate different sets of signaling 
molecules, producing different cellular effects.[23]

This ligand‑induced selective signaling (LiSS) is also 
referred to by others as functional selectivity or biased 
agonism.[23] The LiSS concept provides an explanation as to 
why a single GPCR can induce different response patterns by 
multiple ligands and the existence of so‑called full and partial 
agonists. This realization has led to new opportunities in selec‑
tive drug design and implications for GPCR deorphanization.

Diverse signaling mediators and pathways

By definition, the large heterotrimeric G‑protein 
complex (Gabγα) is traditionally thought of as the canonical 
mediator responsible for initiating the signal transduction 
of GPCRs.[3] The conformational change induced by ligand 
binding recruits and activates G protein by replacing GDP 
with GTP on the Ga subunit, which dissociates from the 
tightly bound Gbγ subunits. Ga‑GTP

 and Gbγ subunits then 
individually initiate different signaling pathways involving 
various second messengers and effector proteins. The Ga‑GTP

 
subunit is then re‑associated with Gbγ subunits after hydro‑
lysis of GTP to GDP by its inherent GTPase activity as well 
as numerous GTPase‑activating proteins (GAPs), allowing 
a new signaling cycle to start [Figure 1].[2,3,49]

G protein can be divided into four major classes based 
on the functional characteristics of Ga subunits: Gas

, Gai/o
, 

G
aq/11

, and Ga12/13
. Gas

 stimulates the effector enzyme, ad‑
enylyl cyclase, to catalyze the production of cAMP from 
ATP. This initiates a cAMP‑dependent pathway leading to 
the activation of protein kinase A (PKA), which is able to 
phosphorylate multiple downstream targets. In contrast, 
Gai

 subunit inhibits the production of cAMP. G
aq/11

 subunit 
activates phospholipase C‑b (PLCb), which cleaves phospha‑
tidylinositol 4,5‑biphosphate (PIP

2
) into inositol‑1,4,5‑tri‑

sphosphate (IP
3
) and diacylglycerol (DAG). IP

3
 and DAG are 

two second messengers that activate the release of Ca2+ and 
protein kinase C, respectively, promoting further signaling 
cascades. Ga12/13

 subunit acts through RhoGEF to activate 
Rho GTPase family members and regulate actin cytoskel‑
eton remodeling to modulate cell migration. In addition, 
dissociated Gbγ 

subunits are also known to activate effector 
molecules such as ion channels and PLCb, thus inducing 
independent signaling pathways.[50‑52]

In recent years, alternatives to the canonical GPCR sig‑
naling pathways that expand and/or fine‑tune GPCR activity 
have been identified. GPCRs are known to be phosphory‑

lated by GRKs in a stimulus‑dependent manner. Receptor 
phosphorylation induces b‑arrestin binding, which down‑
regulates and desensitizes receptor activity.[53,54] Later, it was 
shown that b‑arrestins are also involved in clathrin‑mediated 
receptor endocytosis and G‑protein‑independent signaling 
by interacting with other signaling machineries such as the 
Src family, mitogen‑activated protein kinases (MAPKs), and 
phosphatidylinositol 3‑kinase (PI3K).[27,55,56]

In addition, it has recently been shown that some 
GPCRs can also signal in a G‑protein‑independent and 
b‑arrestin‑independent mechanism by interacting with 
other GPCR‑interacting partners such as JAK2 and PDZ  
domain‑containing protein Na+‑H+ exchange regulatory 
factor 1 (NHERF1).[28] More interestingly, some GPCR‑in‑
teracting partners can also modulate G‑protein‑dependent 
signaling positively or negatively by acting as scaffolds to 
couple downstream signaling molecules closer to GPCRs 
and G proteins to increase the signaling efficiency or by in‑
terfering with GPCR‑G protein association to reduce/inhibit 
G‑protein‑mediated signaling.[28] Apart from the various 
signaling mediators and pathways, GPCRs are also known 
to mediate functional “cross‑talk” with other cell surface 
receptors. GPCR activation, hence, can transactivate other 
non‑GPCR receptors. The best example is the cross‑talk 
between GPCRs and the growth factor receptors.[44,49,57,58] 
GPCR signaling induced the activity of cell surface shed‑
dases (e.g., matrix metalloproteinases), which cleaved 
membrane‑bound growth factors and led to the activation 
of growth factor receptors.[59] GPCR activation also can lead 
to the so‑called inside‑out signaling of integrin by inducing 
conformational changes in the extracellular domain and 
enhancing the ligand‑binding affinity of integrins through 
modification of the intracellular region.[60‑62]

Functional and expressional regulation of 
GPCRs

GPCR activity might be modulated through other 
mechanisms that do not directly involve signaling molecules. 
For example, receptor dimerization/oligomerization has 
been established as an important means to regulate the func‑
tional expression and/or differential signaling activities of 
certain GPCRs.[63,64] It was shown that individual dopamine 
D

1
 and D

2
 receptors signal through Gas

 and Gai
, respectively, 

but the D
1
/D

2
 heterodimer is instead activated through the 

Gaq
 pathway.[65] Similarly, the m‑d opioid heterodimer was 

demonstrated to display a different pharmacologic profile 
from those of the m‑ or d‑homodimers.[66] Functional com‑
plementation was observed when two mutant luteinizing 
hormone receptors (one can interact with ligand but cannot 
signal and the other is defective in ligand binding but able to 
signal) were co‑expressed.[67] Receptor oligomerization can 
also rescue and promote the surface expression of immature 
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GPCRs to form a functional heterodimer. For example, when 
expressed alone, the metabotropic GABA

B
R

1
 isoform was 

retained in the endoplasmic reticulum (ER) as an immature 
receptor whereas the GABA

B
R

2
 isoform was expressed effi‑

ciently on the surface but could neither bind γ‑Aminobutyric 
acid (GABA) nor induce signals. When the two isoforms 
were co‑expressed, both receptors are delivered to the sur‑
face as a functional heterodimer capable of GABA binding 
and signaling.[68‑71] On the contrary, downregulation of 
functional GPCRs can be achieved when a dominant nega‑
tive mutant GPCR is co‑expressed and dimerized with the 
wild‑type receptor, retaining the heterodimer in the ER.[72,73]

Receptor oligomerization can also occur between 
GPCRs and non‑GPCRs. During the search of a functional 
receptor for calcitonin‑gene‑related peptide (CGRP), it was 
found that the calcitonin‑receptor‑like receptor (CRLR), a 
secretin‑class/class B GPCR, needs a co‑receptor called 
receptor‑activity‑modifying protein 1 (RAMP1) to be ef‑
ficiently expressed to form a functional CGRPR.[74] Fur‑
thermore, when CRLR is dimerized with RAMP2/3, the 
heterodimers function as a receptor for adrenomedullin that 
is related to CGRP, but with a different pharmacological 
profile.[63,74] More recently, many such RAMP‑like nonclas‑
sical private GPCR chaperone/escort proteins were identi‑
fied to interact and facilitate the intracellular trafficking 
and cell‑surface expression of specific GPCRs.[23,28,63] The 
realization that chaperone/escort proteins are needed for the 
functional expression of GPCRs has led to the development 
of small molecule pharmacological chaperones to rescue 
poorly expressed disease‑causing mutant GPCRs.

In addition to the functional targeting to cell surface, 
GPCR expression and activity are also highly regulated by 
receptor internalization/endocytosis and post‑endocytic traf‑
ficking. Thus, endocytic sorting can determine the cellular 
fates of GPCRs by targeting the receptors to lysosome for 
degradation or recycling to the cell surface. Again, many of 
these processes are regulated by GPCR‑interacting proteins 
and represent potential targets for chemical intervention.[23,28]

Conclusions

GPCRs represent the largest group of cell membrane 
proteins in human proteome. By transmitting diverse ranges 
of extracellular signals, GPCRs are critical in cell growth, 
differentiation, migration, and death. In normal physiology, 
GPCRs are essential for numerous processes including 
embryonic development, immunological function, brain 
development, CNS function, and normal germ cell produc‑
tion. The expression and function of GPCRs are regulated 
at multiple points during the biosynthesis, intracellular traf‑
ficking, ligand binding, and the endocytosis pathway of re‑
ceptors. GPCRs signal through diverse G‑protein‑dependent 
and G‑protein‑independent mechanisms that involve many 

intracellular messengers and adaptor proteins. Genetic mu‑
tations (deletion, insertion, splicing‑defect, nonsense and 
missense mutations) that render GPCRs defective (totally or 
partially inactive, constitutively active, inefficient trafficking, 
etc.) have been increasingly linked to human diseases. There‑
fore, it is not surprising that GPCRs are the major targets of 
medicinal drugs currently in use or in development. With 
the critical findings of the two Nobel Laureates and many 
others, a much clearer picture is emerging as to how GPCRs 
work their molecular magic. It is expected that many more 
GPCRs will soon be deorphanized and structurally defined. 
As well, extensive GPCR‑mediated signaling networks will 
be mapped in detail. Moreover, better and more specific drugs 
are being developed to modulate the functions of GPCRs and 
hopefully control/cure diseases. Therefore, it might not be 
unrealistic to expect another Nobel Prize in Physiology or 
Medicine for GPCR‑related research in the future.
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