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Phosphodiesterase 4 and Its Inhibitors 
in Inflammatory Diseases

S.-L. Catherine Jin, PhD; Shiau-Li Ding, MS; Shih-Chang Lin1, MD, PhD 

Type 4 cyclic nucleotide phosphodi-
esterases (PDE4) are a family of low km

3’,5’-cyclic adenosine monophosphate
(cAMP)-specific phosphodiesterases includ-
ing at least 20 isozymes encoded by four
genes (PDE4A, PDE4B, PDE4C, and
PDE4D) in mammals. Each PDE4 gene
plays a special, nonredundant role in the
control of cell function even though the four
subfamilies share the highly conserved cat-
alytic domain and upstream conserved
region (UCR) 1 and UCR2 motifs of the
regulatory domain. By their wide tissue distribution as well as differential expression and
regulation among various cell types, PDE4s are viewed as critical regulators of intracellular
cAMP levels, cAMP signaling, and signal compartmentalization. By increasing cAMP lev-
els, PDE4 inhibitors show a broad spectrum of anti-inflammatory effects in almost all
inflammatory cells. Many PDE4 inhibitors have been evaluated in clinical trials for various
inflammatory conditions. Developed inhibitors, including the recently approved and market-
ed roflumilast, have considerable efficacy, but they also have adverse effects such as nausea
and emesis which limit their dosing and subsequently their immunomodulatory activity.
Thus, the development of PDE4 inhibitors with improved therapeutic indexes has been a
major focus of pharmaceutical research for the treatment of chronic inflammatory diseases.
Recent PDE4 gene knockout studies strongly suggest that PDE4 inhibitors with PDE4B
selectivity may retain the anti-inflammatory effects while limiting side effects. Development
of PDE4 inhibitors with different delivery routes, such as topical application and inhalation,
is also a promising approach for the treatment of pulmonary inflammatory conditions and
dermatitis. This review includes a brief overview of the domain structure and function of
PDE4 isozymes, the role of PDE4s in inflammatory cell responses, and the potential thera-
peutic utility of PDE4 inhibitors in inflammatory diseases. (Chang Gung Med J
2012;35:197-210)
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Since Sutherland and Rall identified the enzymatic
activity of cyclic nucleotide phosphodiesterases

(PDEs) in 1958,(1) continuing efforts have been
devoted to advancing our understanding of the cell
biology and functions of these enzymes. These
efforts include biochemical and structural characteri-
zation, pharmacological implication, molecular
cloning and sequencing, interacting protein identifi-
cation, intracellular targeting and compartmentaliza-
tion. PDEs are a superfamily of enzymes catalyzing
the hydrolysis of 3’,5’-cyclic adenosine monophos-
phate (cAMP) and 3’,5’-cyclic guanosine monophos-
phate (cGMP) to their inactive 5’-AMP and 5’-GMP.
Cyclic nucleotides are known to play pivotal roles in
a myriad of cellular functions including immune and
inflammatory responses,(2) cardiac activities such as
heart rate and contractility, smooth muscle relax-
ation, energy homeostasis, fluid homeostasis, visual
excitation, depression, cognition, oocyte maturation,
and apoptosis.(3) Thus, as a central regulator of intra-
cellular concentrations of cyclic nucleotides, PDEs
have been considered pharmocologic targets for vari-
ous disease therapies, such as for congestive heart
failure,(4-6) intermittent claudication,(7,8) erectile dys-
function,(9,10) chronic obstructive pulmonary disease
(COPD),(11,12) asthma,(2,13) depression,(14) and schizo-
phrenia.(15,16)

To date, a total of 21 PDE genes have been iden-
tified in mammals and are classified into eleven fam-
ilies, called PDE1-11 based on their substrate speci-
ficity and affinity, primary sequence homology,
inhibitor selectivity, and regulation by specific acti-
vators.(17-20) Among these, PDEs 4, 7, and 8 are selec-
tive for cAMP, PDEs 5, 6, and 9 for cGMP, and the
other PDE families for both cAMP and cGMP.
PDEs 1, 3, 4, 6, 7 and 8 are encoded by more than
one gene, while the other families are each encoded
by only one gene. Most PDE genes code for multiple
variants derived from alternative splicing and the use
of different promoters,(21,22) and as a result, more than
100 distinct PDE transcripts are likely to be present
in any mammalian species.(20,23)

The mammalian PDEs contain a highly con-
served catalytic domain located near the carboxyl-
terminal half of the protein and a divergent regulato-
ry domain towards the amino-terminal portion of the
protein. A HN(X2)HN(Xn)E/D/Q(X10)HD(X2)H(X25)E
motif conserved in the catalytic domain represents
two consensus metal binding domains that are com-

monly found in proteases such as matrix metallopro-
teinases.(18,20) The regulatory domains are conserved
within each family. The conserved regions include
Ca2+/calmodulin binding domains for PDE1,
upstream conserved regions (UCR) for PDE4,
cGMP-activated PDEs, adenylyl cyclase, and Fh1A
(GAF) domains for PDE6 as well as in PDEs 2, 5,
10, and 11, the Per-Arnt-Sim domain for PDE8,
phosphorylation sites for kinases, and protein-protein
interaction domains.(3,22) The carboxyl-terminal
sequence is divergent among the PDEs but phospho-
rylation(24-26) and posttranslational modifications(27)

have been reported in this region.
In this review we will provide a brief overview

of the molecular characteristics of PDE4 isozymes
and the role of these enzymes in regulation of
inflammatory cell responses. The potential therapeu-
tic utility of PDE4 inhibitors in inflammatory dis-
eases will also be discussed.

The PDE4 family
The PDE4 family in mammals is composed of

four subfamilies, which are encoded by four paralog
genes (PDE4A, PDE4B, PDE4C and PDE4D). More
than 20 PDE4 variants are present in cells arising
from alternative mRNA splicing or the use of differ-
ent transcriptional units.(21,28) These PDE4 isozymes
share a highly conserved catalytic domain of approx-
imately 320-350 amino acids with more than 80%
sequence identity between the members of the four
isotypes.(29-31) The sequences of the N-terminus regu-
latory domains among the four subfamilies are diver-
gent except for those in the two upstream conserved
regions (UCR1 and UCR2), which are unique to the
PDE4 proteins.(32) The four subfamily isozymes can
be subgrouped into three forms: the ‘long’ forms
which contain both UCR1 and UCR2, the ‘short’
forms which lack UCR1, and the ‘super-short’ forms
which contain only the C-terminal portion of
UCR2.(33) The C-terminal sequence of the PDE4
enzymes is divergent and their functional signifi-
cance remains to be defined.

UCR1 and UCR2 are functional modules of
approximately 60 and 80 residues, respectively.(29,32)

UCR2 bears an autoinhibitory nature, a property
inferred from observations that removal of a portion
of this domain causes an increase in the catalytic
activity of the enzyme.(24,30,34) UCR1 contains a pro-
tein kinase A (PKA) phosphorylation site. Elevation
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of cAMP levels in cells induces phosphorylation of
its serine residue by PKA, which then leads to a
rapid activation of PDE4 as well as increases in the
sensitivity of the enzyme to the PDE4 inhibitor
rolipram, as demonstrated in PDE4D3.(35,36) Experi-
ments have further indicated that PDE4 activation
led by PKA phosphorylation in UCR1 may be the
consequence of relieving the inhibitory constraint of
UCR2 on the catalytic domain.(34) Moreover, a poten-
tially electrostatic intramolecular interaction between
UCR1 and UCR2 has been described in PDE4D3.(37)

Phosphorylation of UCR1 appears to disrupt this
interaction.(37)

Evidence also indicates that UCR1 and UCR2 in
PDE4 long forms can interact intermolecularly, thus
leading to PDE4 dimerization, whereas short forms
lacking UCR1 are monomers.(38,39) PKA phosphoryla-
tion of UCR1 does not interfere with this interaction.
The dimerization takes place between the C-terminal
region of UCR1 and the N-terminal region of UCR2
as deletion of either part leads to failure of PDE4
dimerization. Disruption of dimerization abrogates
the activation of PDE4D3 by PKA phosphorylation
as well as reduces the sensitivity of the enzyme to
rolipram.(38,39)

Expression of PDE4 in inflammatory cells
The PDE4 isozymes are widely distributed in

mammalian cells and tissues, implicating the diverse
biological function of these proteins. PDE4s are the
predominant cAMP-degrading isozymes in most, if
not all, immune and inflammatory cells, including T
cells, B cells, eosinophils, neutrophils, dendritic
cells, monocytes, and macrophages.(2) Three PDE4
subtypes, PDE4A, PDE4B and PDE4D, are
expressed in these cells, while PDE4C is minimal or
absent.(13,40) PDE3 and PDE7 are also detected in most
of the inflammatory cells.(13,40) The expression levels
of these PDE isozymes are differentially regulated by
a variety of inflammatory stimuli. As demonstrated
in Jurkat T-cells and human peripheral blood T-cells,
8-Bromo-cAMP or prostaglandin E2 evidently
induces PDE3 and PDE4 enzyme activity, and this
effect is associated with increased PDE3B, PDE4A4,
PDE4A1, 4D2, and 4D3 mRNA expression.(41)

Stimulation of human peripheral blood cluster of dif-
ferentiation 4+ T (CD4+ T) cells with anti-CD3 and
anti-CD28 antibodies also regulates the expression of
PDE4 subtypes differentially, with PDE4A and

PDE4D mRNAs upregulated along with enzyme
activity within 5 days but PDE4B mRNA upregulat-
ed transiently with highest levels at 24 h after stimu-
lation.(42) In addition, lipopolysaccharide (LPS) has
been shown to selectively induce PDE4B2 mRNA
expression in human circulating monocytes.(43) This
regulation of PDE4B expression has been confirmed
in monocytes and peritoneal macrophages of PDE4
knockout mice.(44,45) Among 12 PDE4 isozymes test-
ed, PDE4A4 and PDE4B2 were detected at higher
levels in peripheral blood monocytes of smokers
compared with nonsmokers.(46) Moreover, PDE4A4
transcripts were found significantly upregulated in
alveolar macrophages from smokers with COPD
compared with smokers without COPD.(46) Although
the functional consequences of the PDE4 regulation
remain to be determined, these PDE4 isozymes
altered in pathophysiological processes may serve as
potential therapeutic targets for a variety of inflam-
matory conditions.

PDE4 and inflammation
To date, our understanding of the cellular func-

tions of PDE4 has been mostly derived from experi-
ments involving PDE4 inhibitors. These small mole-
cule compounds, including the prototype inhibitor
rolipram and second-generation compounds such as
roflumilast and cilomilast, have been shown to pro-
duce a wide range of pharmacological effects in vitro
and in vivo. These include antiinflammatory and
immunomodulatory effects,(2,13,47-50) antidepressant and
antischizophrenia actions,(14,15,51) and cognitive
enhancement,(52,53) clearly demonstrating a broad, crit-
ical role of PDE4 in cellular and physiological func-
tions. Among these effects, the inflammatory aspect
of PDE4 functions has been explored most exten-
sively. In fact, PDE4 is the major family of PDE
enzymes expressed in immune and inflammatory
cells. Inhibition of PDE4 has been shown to suppress
a diverse spectrum of inflammatory responses in
vitro and in vivo.(2,13,40) More importantly, many PDE4
inhibitors in development are efficacious in animal
models of various inflammatory disorders, such as
asthma, COPD, psoriasis, inflammatory bowel dis-
eases, and rheumatoid arthritis,(13,54) as well as in clin-
ical trials for asthma and COPD (see below).(11,55,56)

These data thus provide strong evidence that PDE4 is
a valid, promising drug target for different inflamma-
tory conditions.
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The non-selective PDE inhibitor theophylline
The nonselective PDE inhibitor theophylline, a

methylxanthine drug, has been used in therapy for
respiratory diseases such as asthma and COPD for
almost 90 years.(57-59) Although initially recognized as
a PDE inhibitor, theophylline is also known as a
potent adenosine receptor antagonist(60,61) and an acti-
vator of histone deacetylase 2 (HDAC2).(62) It is
thought that the beneficial effects of theophylline on
asthma and COPD are largely due to its antiinflam-
matory properties. Several mechanisms have been
proposed for such effects, which include (1) increas-
ing intracellular cAMP concentrations via inhibition
of PDE (mainly PDE4),(2,63) (2) decreasing inflamma-
tory gene expression through inducing HDAC activi-
ty,(62) and (3) reversal of corticosteroid resistance by
inhibiting oxidative stress dependent phosphoinosi-
tide 3 kinase δ.(64,65) In clinical practice, theophylline
is known to interact with a number of drugs, such as
cimetidine and phenytoin, and have a narrow thera-
peutic window. It causes a myriad of side effects at
higher doses including nausea, diarrhea, headache,
insomnia, increased heart rate, and arrhythmias.(66,67)

These disadvantages together with its relatively low
efficacy compared with inhaled glucocorticoids or
β2-agonists have limited its usage in asthmatic
patients. Because of its nonselectivity towards most
of the PDEs expressed in body cells, the pharmaceu-
tical industry has devoted massive efforts in develop-
ing inhibitors selective for PDE4s, the isozymes
expressed predominantly in proinflammatory
cells.(68,69) In fact, PDE4 inhibitors are considered
promising therapeutic agents because of their promi-
nent antiinflammatory effects (detailed below).

PDE4 inhibitors
Numerous PDE4 selective inhibitors have been

patented in the past two decades, and some of them
have been evaluated in clinical trials for several
inflammatory conditions, such as asthma, COPD,
atopic dermatitis, multiple sclerosis, and rheumatoid
arthritis. The development of most of these com-
pounds, however, has been discontinued because of
narrow therapeutic windows. A major reason for
their poor clinical results is the consequence of dos-
ing limitation caused by side effects such as nausea
and emesis. The PDE4 inhibitors explored in clinical
trials have been mostly for asthma, likely because of
the high prevalence and increasing morbidity of the

disease. However, no compounds have yet reached
the market as asthma treatments. Nevertheless, the
first orally active PDE4 inhibitor roflumilast was
approved in June 2010 by the European Medicines
Agency Committee for severe COPD associated with
chronic bronchitis in adult patients. In March 2011,
the United States Food and Drug Administration
approved the drug for reducing COPD exacerba-
tions.(70,71) Clinical studies have shown that roflumi-
last improves lung function and reduces the frequen-
cy of COPD exacerbations in patients with symp-
toms of chronic bronchitis.(71-74) Although the side
effects were generally mild to moderate, nausea,
diarrhea, headache, and weight loss are noted with
roflumilast.(70)

In view of the side effect profile of second-gen-
eration PDE4 inhibitors, new strategies for the
design of active and nonemetic compounds have
been attempted to hopefully overcome the problems
and to improve therapeutic ratios. It has been
hypothesized that the side effects of the PDE4
inhibitors are probably a result of their nonselectivity
to all four PDE4 subtypes, and thus generation of
new PDE4 inhibitors with subtype selectivity may
provide clinical benefits by maintaining therapeutic
efficacy while decreasing the side effects.(75) This
notion is supported by a series of studies where
PDE4 gene-targeted mice were used to define the
function of individual PDE4 subtypes.(76) For exam-
ple, the data have shown that ablation of PDE4B, but
not PDE4A or PDE4D, significantly suppresses
LPS-induced tumor necrosis factor (TNF)-α produc-
tion in circulating monocytes and peritoneal
macrophages.(44,45) In addition, in a murine model of
allergic asthma, Th2 cell functions including prolif-
eration and cytokine production, were also disrupted
in mice deficient in PDE4B, but not PDE4A or
PDE4D.(77,78) In a separate study, reversing α2-adreno-
ceptor-mediated anesthesia, a behavioral correlate of
emesis in nonvomiting species such as rodents, was
evaluated in xylazine/ketamine-treated mice and the
results indicated that inhibition of PDE4D but not
PDE4B may be responsible for the emetic effects of
non-selective PDE4 inhibitors.(79) Taken together,
these findings in PDE4 knockout mice suggest that
an inhibitor with PDE4B selectivity should retain
many beneficial antiinflammatory effects without the
emetic effects.

In spite of the significant challenges of synthe-
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sizing PDE4 subtype-selective inhibitors due to the
highly conserved catalytic domain of PDE4
isozymes, generation of inhibitors with PDE4 sub-
type selectivity has recently been described.(80,81) A
series of potent PDE4B inhibitors with more than
100-fold selectivity over PDE4D have been synthe-
sized from lead 2-arylpyrimidine derivatives.(80)

Biological evaluation of a selective PDE4B inhibitor
revealed its potent antiinflammatory effects in vitro
and in vivo. Investigation in ferrets also showed a
significantly less emesis with the compound com-
pared with the non-selective PDE4 inhibitor cilomi-
last.(80) In a separate report, small-molecule allosteric
modulators of PDE4D have been generated using a
nontraditional approach.(81) These modulators do not
completely inhibit enzyme activity, yet show potent
cognition enhancement in animal models.
Interestingly, the results from the rodent model of a
behavioral correlate of emesis indicated that PDE4D
allosteric modulators have reduced potential to cause
emesis whereas PDE4D full inhibitors are highly
emetic.(81) The reason for this different emetic effect
is probably because PDE4D allosteric modulators
have less effect on cAMP levels, because of their
lower potency of PDE4 inhibition compared with
full inhibitors of PDE4, and thus are able to better
maintain cAMP signaling spatially and temporally
while reducing target-based toxicity.(81)

To avoid the problem of systemic side effects
caused by oral administration, development of PDE4
inhibitors with alternative routes of delivery has been
reported.(82) In general, when delivered by inhalation,
the drug may have reduced systemic exposure and
focused delivery to lung tissues, thus minimizing the
potential of systemic side effects. GSK256066 is an
inhaled PDE4 inhibitor which shows a protective
effect on both early and late asthmatic responses to
inhaled allergen in atopic asthmatics.(82) The drug was
well tolerated with low systemic exposure, but larger
studies are needed to establish the safety profile.
Topical application of PDE4 inhibitors is another
potential means to minimize systemic side effects.
Benzylamine-substituted phthalazinones have recent-
ly been developed as potent topically active PDE4
inhibitors, and have shown anti-inflammatory effects
in a mouse model of dermatitis.(83) Additional studies
are required to evaluate the therapeutic index of the
compounds. Although the majority of orally admin-
istered PDE4 inhibitors face the issue of side effects,

a number of oral compounds currently in develop-
ment, such as apremilast for psoriasis(84) and the
PDE4D allosteric modulators as described above,(81)

are reported to be less emetic and have wider thera-
peutic ratios. The molecular mechanism of this toler-
ability has not been reported.

Effects of PDE4 inhibition in leukocytes
Cyclic AMP-elevating agents including PDE4

inhibitors are known to suppress a myriad of inflam-
matory responses in most immune and inflammatory
cells. These effector responses include proliferation,
chemotaxis, phagocytosis, and release of proinflam-
matory mediators such as lipid mediators, reactive
oxygen species (ROS), hydrolytic enzymes,
cytokines and chemokines.(2,40,85) The antiinflammato-
ry effects derived from PDE4 inhibition or ablation
in leukocytes are briefly reviewed below.

Monocytes and macrophages

Among the immune cells, circulating monocytes
and tissue macrophages are key players in the innate
immune responses. They are a major source of TNF-
α, a proinflammatory cytokine that orchestrates the
complex processes involved in immunity as well as
inflammatory disease states, such as rheumatoid
arthritis, Crohn’s disease, and septic shock.(86-89)

Through activation of toll-like receptor (TLR) sig-
naling, the endotoxin LPS stimulates TNF-α produc-
tion in monocytes and macrophages. The TNF-α
release induced by LPS is markedly inhibited by
PDE4 inhibitors in blood monocytes,(2,44,75) whereas
the inhibition is less evident in tissue
macrophages.(44,45) This discrepancy may be explained
by the different PDE isozyme activity profiles in the
two cell types, with monocytes containing predomi-
nantly PDE4 while PDEs 1, 3 and 4 are major iso-
forms in alveolar macrophages.(90) Despite the simul-
taneous expression of the three PDE4 genes
(PDE4A, PDE4B, and PDE4D), LPS stimulation of
TLR selectively induces PDE4B expression and
activity in circulating monocytes(43,44) and peritoneal
macrophages.(45) Functionally, ablation of PDE4B,
but not PDE4A or PDE4D significantly reduces
LPS-induced TNF-α release in these cells. In addi-
tion, the PDE4 inhibitors have no additional inhibito-
ry effect on the TNF-α release in PDE4B-deficient
macrophages while significantly suppressing the
response in PDE4A- and PDE4D-null cells. These
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data demonstrate that the pharmacological effects of
PDE4 inhibitors on macrophage TNF-α production
are mediated exclusively through inhibition of
PDE4B.(44,45)

cAMP regulates multiple cellular processes
through activation of at least three distinct signaling
effectors, including PKA, exchange proteins directly
activated by cAMP (Epac), and cyclic nucleotide-
gated ion channels. A variety of inflammatory
responses inhibited by cAMP are mediated by PKA
or Epac. For example, activation of PKA, but not
Epac, suppresses LPS-induced TNF-α production
and ionophore A23187-stimulated leukotriene B4
(LTB4) production in alveolar and peritoneal
macropages.(45,91) By contrast, activation of Epac, but
not PKA, suppresses FcγR-mediated phagocytosis
and LPS-induced interferon (IFN)-β production in
macrophages.(91,92) Interestingly, in human monocyte-
derived macrophages, cAMP has been demonstrated
to induce, rather than decrease, the expression and
secretion of several proinflammatory chemokines
such as CXCL-7, CXCL-5, and CCL-2. This effect is
mediated by activation of Epac but not PKA.(93)

T lymphocytes

In T lymphocytes, PDE4 inhibitors are shown to
attenuate anti-CD3/CD28-, mitogen-, and specific
antigen-stimulated T-cell activation, proliferation,
and cytokine release such as interleukin (IL)-2, IL-5,
and IFN-γ.(2,42,54) Some of these inhibitory effects have
been demonstrated to be prevented by PKA
inhibitors.(94) PDE3 inhibitors have little or no effect
on these responses, but they can enhance the effects
of PDE4 inhibitors.(95-98) Additionally, induction of
PDE7 is demonstrated to be necessary for T cell acti-
vation and IL-2 production.(99) To define the function-
al role of each PDE4 subtype in CD4+ T cells, Peter
and colleagues employed PDE4 subtype-specific
siRNAs in human anti-CD3/CD28-stimulated T
cells. The results indicate that PDE4B and PDE4D
are involved in modulating early or “short-term”
responses, such as IL-2 release, and PDE4D is a pre-
dominant subtype conducting “long-term” responses,
such as IFN-γ and IL-5 release and proliferation.(42)

CD4+ helper T (TH) cells are classified into dif-
ferent functional subsets depending on their cytokine
profiles. TH1 cells produce predominantly IFN-γ and
lymphotoxin and are pivotal in macrophage activa-
tion. TH2 cells secrete predominantly IL-4, IL-5, and

IL-13, and are important for immunoglobulin (Ig) E
production as well as eosinophil differentiation and
activation. Exaggerated TH1 responses may lead to
autoimmune diseases, such as type 1 diabetes,
rheumatoid arthritis, and multiple sclerosis, whereas
TH2 cells are associated with allergic conditions such
as asthma and anaphylaxis.(100-102) Reports on the
effects of PDE4 inhibitors on proliferation and
cytokine release in these cells are somewhat irrecon-
cilable. Essayan and colleagues demonstrated that
the proliferation of both TH1 and TH2 clonal cells are
inhibited by rolipram, with TH2 cells being more sen-
sitive to PDE4 inhibition.(98) PDE4 inhibitors are also
shown to block the release of both TH1 and TH2
cytokines.(98,103) Contrarily, using TH1 and TH2 cells
derived from ovalbumin-specific T-cell receptor
transgenic mice, Claveau et al. reported that PDE4
inhibitors significantly inhibited TH1-mediated IFN-γ
production, but had no significant effect on TH2-
mediated IL-4 or IL-13 production.(104) On the other
hand, studies of PDE4 knockout mice in a murine
model of asthma revealed that airway-draining
lymph node cells deficient in PDE4B, but not
PDE4A or PDE4D, produced a marked reduction in
T-cell proliferation and TH2 cytokine production,
including IL-4, IL-5, and IL-13.(77,78) Conversely,
release of the TH1 cytokine IFN-γ was not affected in
PDE4B null cells.(78)

The subset TH17 cells are important in host
defense against specific extracellular pathogens, and
are also thought to be involved in the pathogenesis of
autoimmune diseases.(105) These cells produce IL-17A
and IL-17F, which upon ligation to their receptors
induce secretion of several proinflammatory
cytokines and chemokines to promote neutrophil
recruitment, thus leading to tissue inflammation. A
recent study demonstrated that PDE4 inhibitors also
profoundly attenuate IL-17 production in anti-
CD3/CD28-stimulated peripheral blood mononuclear
cells, purified CD4+ T cells, and memory TH17
cells.(106)

Neutrophils

Neutrophils are a type of phagocyte that circu-
lates in the blood awaiting the call from an infected
site to become activated and recruited. Upon stimula-
tion by inflammatory mediators such as the bacterial
component N-formyl-methionyl-leucyl-phenylala-
nine (fMLP), the C5 complement fragment C5a, and
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the chemokine IL-8, these cells are induced to
express adhesion molecules, infiltrate into the
inflammatory site, and subsequently undergo phago-
cytosis and produce inflammatory mediators, such as
ROS, proteases, and LTB4. Consistent with the pre-
dominant PDE4 expression in these cells, PDE4
inhibitors suppress a variety of neutrophil responses,
including fMLP-induced generation of superoxide
anion and LTB4,(107-109) degranulation,(110,111) and expres-
sion of adhesion molecules.(111-113) Inhibition of PDE4
also reduces the ability of neutrophils to phagocytose
zymosan particles.(114) To define the role of individual
PDE4 subtypes in neutrophils, a study in an animal
model of airway neutrophilia, a characteristic feature
of COPD, was conducted in PDE4-deficient mice.(115)

The data showed that ablation of PDE4D or PDE4B,
but not PDE4A, had profound effects on neutrophil
functions. These include a significant reduction in
neutrophil recruitment to the lung of PDE4B and
PDE4D null mice after exposure to inhaled LPS, and
an associated decrease in the expression of the adhe-
sion molecule β2-integrin (CD18) in the neutrophils
of these mice. Chemotaxis in response to IL-8 or
macrophage inflammatory protein (MIP)-2 is also
attenuated in the splenic neutrophils of PDE4B and
PDE4D null mice.(115)

Eosinophils

Eosinophils are responsible for defending
against helminths, worms, and other intestinal para-
sites. Along with activated mast cells, they also par-
ticipate in the pathogenesis of allergic conditions
such as asthma. Upon stimulation by cytokines such
as IL-5, IL-3 and granulocyte macrophage colony-
stimulating factor or inflammatory factors such as
fMLP, C5a, and platelet-activating factor (PAF),
eosinophils release a plethora of toxic substances and
proinflammatory mediators, including ROS, cationic
granule proteins, leukotrienes, and various cytokines,
which are thought to cause airway damage in asth-
matics.(54) Some of these responses, such as fMLP-
and C5a-induced ROS formation(109) as well as C5a-
and PAF-stimulated leukotriene C4 (LTC4) produc-
tion,(116) have been shown to be potently inhibited by
PDE4 inhibitors. Moreover, inhibition of PDE4 also
suppresses the expression of adhesion molecules and
consequently decreases the chemotaxis of human
eosinophils.(116,117) An earlier study indicated that
PDE4 inhibitors are able to inhibit IL-5-induced sur-

vival of human eosinophils.(118) However, a recent
report suggests that spontaneous eosinophil apopto-
sis is delayed by rolipram in vitro, and combining a
PDE4 inhibitor with a β2-agonist produces a further
delay in apoptosis.(119)

Mast cells and basophils

Mast cells are resident in tissues throughout the
body, particularly in the connective tissues underly-
ing the mucosa of the respiratory and gastrointestinal
tracts as well as the dermis of the skin. Mast cells
and circulating basophils are important in mediating
allergic disorders such as asthma and anaphylaxis.
These cells become activated when the IgE mole-
cules bound to high affinity IgE receptors FcεRI on
their cell surface are cross-linked to antigens. This
results in a rapid release of granule contents such as
histamine and other inflammatory mediators.
Limited information is available on how PDE4
inhibitors regulate inflammatory responses in mast
cells. In a series of studies, Peachell and colleagues
showed that PDE4 inhibitors can attenuate anti-IgE-
induced release of histamine and LTC4 from human
basophils,(120,121) but are ineffective at inhibiting these
responses in human lung mast cells.(121) Additionally,
the IgE- and IL-3-mediated release of histamine, as
well as IL-4 and IL-13, have also been shown to be
inhibited by PDE4 inhibitors in basophils.(122)

B lymphocytes

Upon antigen recognition, B lymphocytes are
activated, proliferate, and differentiate into Ig-pro-
ducing plasma cells, which represent the key media-
tor of humoral immunity. The isotype class switch of
B cells to IgE production is known to be crucial in
the development of many allergic conditions includ-
ing asthma. Th2 cytokines, IL-4 in particular, induce
IgE production in B cells.(123) Mice deficient in IL-4
fail to produce measurable levels of allergen-specific
IgE.(124) Several cAMP-elevating agents, such as
PDE4 inhibitors, β2-agonists, cAMP analogs, and E-
series prostaglandins, are shown to enhance the IL-4-
directed IgE production.(125) A separate report also
indicates that B-cell proliferation induced by LPS
plus IL-4 is augmented by rolipram;(126) however, this
effect is not mimicked by PGE2 or forskolin.
Interestingly, Paul-Eugene et al. have shown that IL-
4-induced IgE production can be potentiated by
cAMP only when B cells are stimulated at a subopti-
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mal concentration of IL-4.(127) These data are consis-
tent with the recent findings that ablation of PDE4B,
and therefore a condition of increased cAMP, results
in normal IgE production in spite of low IL-4 in
PDE4B null mice.(78)

Dendritic cells

Dendritic cells (DC) are antigen presenting cells
whose major function is to prime naive T cells and
trigger T-cell responses. Human monocyte-derived
DCs express predominantly PDE4, with PDE4A
being the most abundant mRNA.(128) In immature DC,
LPS- or CD40L-induced TNF-α and IL-12p70 pro-
duction is reduced by PDE4 inhibitors. DCs matured
in the presence of PDE4 inhibitors are still able to
stimulate T cells; however, they show an increased
expression of C-X-C chemokine receptor 4 and
reduced TNF-α and IL-12p70 production in response
to CD40L. Moreover, when these matured DCs are
used to stimulate naive T cells, a reduction in IFN-γ-
producing (TH1) cells is observed.(128) This result is in
contrast with the findings reported in mice deficient
in PDE4B or PDE4A, where a normal IFN-γ
response is produced in response to allergen stimula-
tion.(78) A separate study using murine bone marrow-
derived dendritic cells (BMDC) has shown that
analogs of the lipid mediator prostaglandin I2, such
as iloprost, cicaprost, and treprostinil, suppress the
LPS-induced production of several proinflammatory
cytokines and chemokines, such as IL-12, TNF-α,
IL-1α, IL-6, MIP-1α, and monocyte chemotactic
protein-1, while increasing the antiinflammatory
cytokine IL-10 production in these cells. This modu-
latory effect is associated with an upregulation of
intracellular cAMP and downregulation of nuclear
factor kappa B activity.(129) Moreover, the regulation
of cytokine and chemokine production by cAMP is
mediated by both Epac-1 and PKA activation in
BMDC.(130) Little is known about how PDE4
inhibitors influence inflammatory responses in these
cells.

Conclusion
Almost two decades have passed since targeting

PDE4 became a focus in the development of novel
therapeutics for pulmonary inflammatory diseases.
The recent approval of roflumilast as a drug for
COPD therapy provides proof that the PDE4
isozyme family can be a therapeutic target.

Nevertheless, this second-generation PDE4 inhibitor
is still not without side effects. Several strategies
have been proposed to minimize this problem, such
as designing inhibitors as inhaled drugs or topically
applied agents, as well as improving subtype selec-
tivity. The development of PDE4 inhibitors with
PDE4B selectivity has been considered a promising
approach because much evidence demonstrates that
ablation or inhibition of PDE4B produces a broad
spectrum of antiinflammatory effects while minimiz-
ing unwanted side effects.(76,80) Nevertheless, the
impact of PDE4B-selective inhibitors on inflamma-
tory diseases awaits further clinical trials. Several
PDE4B and PDE4D selective inhibitors have been
designed and synthesized, and their effects on
inflammation are under investigation. The develop-
ment of additional PDE4 subtype-selective inhibitors
based on their detailed crystal structures is also
underway.
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